亚洲一区无码,欧美亚洲100p,欧美一区二区三区在线视频,午夜时刻免费观看

世聯(lián)博研(北京)科技有限公司 主營(yíng):Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷售技術(shù)服務(wù): 美國(guó)Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測(cè)試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國(guó)cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測(cè)試分析、aresis多點(diǎn)力學(xué)測(cè)試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測(cè)試分析系統(tǒng)
服務(wù)電話: 010-67529703
主營(yíng)產(chǎn)品: Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷售技術(shù)服務(wù): 美國(guó)Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測(cè)試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國(guó)cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測(cè)試分析、aresis多點(diǎn)力學(xué)測(cè)試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測(cè)試分析系統(tǒng)
聯(lián)系我們

fusinstruments聚焦超聲開(kāi)放血腦屏障系統(tǒng)-RK-50聚焦超聲開(kāi)放血腦屏障系統(tǒng)

  • 如果您對(duì)該產(chǎn)品感興趣的話,可以
  • 產(chǎn)品名稱:fusinstruments聚焦超聲開(kāi)放血腦屏障系統(tǒng)-RK-50聚焦超聲開(kāi)放血腦屏障系統(tǒng)
  • 產(chǎn)品型號(hào):RK-50
  • 產(chǎn)品展商:加拿大fusinstruments
  • 產(chǎn)品文檔:無(wú)相關(guān)文檔
簡(jiǎn)單介紹

RK-50:臺(tái)式聚焦超聲系統(tǒng)(Bench-top focused ultrasound),這一聚焦超聲系統(tǒng)能夠完成定向大腦暴露(開(kāi)放血腦屏障),而不需要并發(fā)的成像。 RK-50是獨(dú)立的全能型臨床前系統(tǒng),可以利用聚焦超聲的各種用途。通過(guò)傳統(tǒng)的立體定位方法的使用,RK-50能夠透過(guò)嚙齒類動(dòng)物大腦的頭蓋骨向細(xì)小的結(jié)構(gòu)發(fā)射**劑量的聚焦超聲。該系統(tǒng)還能夠自動(dòng)?xùn)鸥窕幌盗芯劢钩晛?lái)覆蓋任意大小的體積。其應(yīng)用包括切除、血腦屏障毀壞和神經(jīng)調(diào)制。設(shè)備暫時(shí)性開(kāi)放血腦屏障的效果非常好, 不會(huì)長(zhǎng)期破壞人體的血腦屏障,大約12小時(shí)后,血腦屏障即恢復(fù)完好,重新開(kāi)始為大腦阻擋有害物質(zhì)

產(chǎn)品描述

RK-50:臺(tái)式聚焦超聲血腦屏障系統(tǒng)

這一聚焦超聲系統(tǒng)能夠完成定向大腦暴露,而不需要并發(fā)的成像。

RK-50是獨(dú)立的全能型臨床前系統(tǒng),可以利用聚焦超聲的各種用途。通過(guò)傳統(tǒng)的立體定位方法的使用,RK-50能夠透過(guò)嚙齒類動(dòng)物大腦的頭蓋骨向細(xì)小的結(jié)構(gòu)發(fā)射**劑量的聚焦超聲。該系統(tǒng)還能夠自動(dòng)?xùn)鸥窕幌盗芯劢钩晛?lái)覆蓋任意大小的體積。其應(yīng)用包括切除、血腦屏障毀壞和神經(jīng)調(diào)制。

設(shè)備暫時(shí)性開(kāi)放血腦屏障的效果非常好, 不會(huì)長(zhǎng)期破壞人體的血腦屏障,大約12小時(shí)后,血腦屏障即恢復(fù)完好,重新開(kāi)始為大腦阻擋有害物質(zhì)


技術(shù)參數(shù):

· **快速的三維定位系統(tǒng);

· **計(jì)劃軟件幫助立體定位目標(biāo)選擇和暴露劑量控制(在配備的PC上運(yùn)行);

· 在線性、格柵和環(huán)形劑量暴露中多點(diǎn)定位都是切實(shí)可行的;

· 聚集超聲的劑量設(shè)定可以輕易地調(diào)控用于任何用途;

· 利用校準(zhǔn)的聚焦超聲轉(zhuǎn)換器可以調(diào)節(jié)到一定范圍內(nèi)的頻率。

The focused ultrasound system that enables targeted brain exposures without the need for concurrent imaging.
The RK-50 is a stand-alone, versatile, preclinical system designed to take advantage of the various applications of focused ultrasound. Through the use of traditional stereotaxic targeting methods, the RK-50 can deliver precise doses of FUS through an intact skull to small structures in the rodent brain. The system can also be used to automatically raster a series of FUS exposures to cover an arbitrary volume. Applications include ablation, blood-brain barrier disruption, and neuromodulation.
Specifications:
  • Precise, fast targeting with 3-axis positioning system
  • Treatment planning software facilitates stereotaxic-guided target selection and exposure control (runs on included PC)
  • Multi-point targeting is achievable in line, raster, and circular exposures
  • Focused ultrasound dose settings can be easily controlled for any application
  • Utilizes calibrated focused ultrasound transducers, available in a range of frequencies


  • Studies using FUS Instruments’ Systems

    Moyer, Linsey C., et al. “High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles.” Journal of Therapeutic Ultrasound 3.1 (2015): 7.

    Ellens, N. P. K., et al. “The targeting accuracy of a preclinical MRI-guided focused ultrasound system.” Medical physics 42.1 (2015): 430-439.

    Burgess, Alison, et al. “Alzheimer disease in a mouse model: MR imaging–guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior.”Radiology 273.3 (2014): 736-745.

    Diaz, Roberto Jose, et al. “Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors.” Nanomedicine: Nanotechnology, Biology and Medicine 10.5 (2014): 1075-1087.

    Nance, Elizabeth, et al. “Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood? brain barrier using MRI-guided focused ultrasound.” Journal of Controlled Release 189 (2014): 123-132.

    Oakden, Wendy, et al. “A non-surgical model of cervical spinal cord injury induced with focused ultrasound and microbubbles.” Journal of neuroscience methods 235 (2014): 92-100.
    .
    Phillips, Linsey C., et al. “Dual perfluorocarbon nanodroplets enhance high intensity focused ultrasound heating and extend therapeutic window in vivo.” The Journal of the Acoustical Society of America 134.5 (2013): 4049-4049.
    .
    Alkins, Ryan D., et al. “Enhancing drug delivery for boron neutron capture therapy of brain tumors with focused ultrasound.” Neuro-oncology (2013): not052.

    Alkins, Ryan, et al. “Focused ultrasound delivers targeted immune cells to metastatic brain tumors.” Cancer research 73.6 (2013): 1892-1899.

    Huang, Yuexi, Natalia I. Vykhodtseva, and Kullervo Hynynen. “Creating brain lesions with low-intensity focused ultrasound with microbubbles: a rat study at half a megahertz.” Ultrasound in medicine & biology 39.8 (2013): 1420-1428.

    Jord?o, Jessica F., et al. “Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound.” Experimental neurology 248 (2013): 16-29.

    Scarcelli, Tiffany, et al. “Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in ***** mice.” Brain stimulation 7.2 (2013): 304-307.

    Etame, Arnold B., et al. “Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound.” Nanomedicine: Nanotechnology, Biology and Medicine 8.7 (2012): 1133-1142.

     

    Thévenot, Emmanuel, et al. “Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound.” Human gene therapy 23.11 (2012): 1144-1155.

     

    Staruch, Robert, Rajiv Chopra, and Kullervo Hynynen. “Hyperthermia in Bone Generated with MR Imaging–controlled Focused Ultrasound: Control Strategies and Drug Delivery.” Radiology 263.1 (2012): 117-127.

     

    Burgess, Alison, et al. “Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier.” PLoS One 6.11 (2011): e27877.

     

    Jord?o, Jessica F., et al. “Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer’s disease.” PloS one 5.5 (2010): e10549.

     


    Blood-Brain Barrier Disruption Studies

    Leinenga, Gerhard, and Jürgen G?tz. “Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model.” Science translational medicine 7.278 (2015): 278ra33-278ra33.

     

    Wang, S., et al. “Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus.” Gene Therapy 22.1 (2015): 104-110.

     

    McDannold, Nathan, et al. “Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.” Cancer research 72.14 (2012): 3652-3663.

     

    Treat, Lisa H., et al. “Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma.” Ultrasound in medicine & biology 38.10 (2012): 1716-1725.
    .

    Kinoshita, Manabu, et al. “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption.” Proceedings of the National Academy of Sciences 103.31 (2006): 11719-11723.

     

    Kinoshita, Manabu, et al. “Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound.” Biochemical and biophysical research communications 340.4 (2006): 1085-1090.
    .


    Relevant Review Papers

    Burgess, Alison, and Kullervo Hynynen. “Drug delivery across the blood-brain barrier using focused ultrasound.”Expert opinion on drug delivery 11.5 (2014): 711-721.

     

    O’Reilly, Meaghan A., and Kullervo Hynynen. “Ultrasound enhanced drug delivery to the brain and central nervous system.” International Journal of Hyperthermia 28.4 (2012): 386-396.

  •  

    產(chǎn)品留言
    標(biāo)題
    聯(lián)系人
    聯(lián)系電話
    內(nèi)容
    驗(yàn)證碼
    點(diǎn)擊換一張
    注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發(fā)送信息!
    2.如有必要,請(qǐng)您留下您的詳細(xì)聯(lián)系方式!
    Copyright@ 2003-2025  世聯(lián)博研(北京)科技有限公司版權(quán)所有      電話:13466675923 傳真: 地址:北京市海淀區(qū)西三旗上奧世紀(jì)中心A座9層906 郵編:100096