這一可兼容核磁共振成像的影像導(dǎo)航聚焦超聲系統(tǒng)由一套電腦控制的高精度三維定位系統(tǒng)和高能的聚焦超聲轉(zhuǎn)換器組成。定位系統(tǒng)能夠精準(zhǔn)地向毫米大小的區(qū)域輸送聚焦超聲能量到軟組織。這一系統(tǒng)專門用于研究從小到大的動(dòng)物模型,從而探究超聲-組織相互作用,在用于人體之前評(píng)價(jià)**方法的**性,可匹配臨床MR和CT掃描儀從而完成影像導(dǎo)航的**計(jì)劃和遞送。該系統(tǒng)完全無(wú)磁性,因而可以與高場(chǎng)核磁成像儀共同工作,還可匹配X射線CT成像。 設(shè)備暫時(shí)性開放血腦屏障的效果非常好, 不會(huì)長(zhǎng)期破壞人體的血腦屏障,大約12小時(shí)后,血腦屏障即恢復(fù)完好,重新開始為大腦阻擋有害物質(zhì)
RK-100磁共振成像影像導(dǎo)航的血腦屏障聚焦超聲系統(tǒng)
這一可兼容核磁共振成像的影像導(dǎo)航聚焦超聲系統(tǒng)由一套電腦控制的高精度三維定位系統(tǒng)和高能的聚焦超聲轉(zhuǎn)換器組成。
定位系統(tǒng)能夠精準(zhǔn)地向毫米大小的區(qū)域輸送聚焦超聲能量到軟組織。這一系統(tǒng)專門用于研究從小到大的動(dòng)物模型,從而探究超聲-組織相互作用,在用于人體之前評(píng)價(jià)**方法的**性,可匹配臨床MR和CT掃描儀從而完成影像導(dǎo)航的**計(jì)劃和遞送。該系統(tǒng)完全無(wú)磁性,因而可以與高場(chǎng)核磁成像儀共同工作,還可匹配X射線CT成像。
這一無(wú)磁性定位系統(tǒng)能夠在成像時(shí)沿著任意3D路徑調(diào)動(dòng)轉(zhuǎn)換器;超聲劑量的遞送用通過MRI或者CT的影像實(shí)現(xiàn),具體依賴系統(tǒng)的配置;實(shí)時(shí)監(jiān)控前進(jìn)方向,轉(zhuǎn)換器接收反射的電能從而保證一致的能量傳輸。
該系統(tǒng)能夠遞送從軟組織熱凝結(jié)的高能連續(xù)聲波降解,到適用于例如組織裂解、**傳輸或者血管透化等用途的脈沖聲波降解所需的劑量。因?yàn)樵撓到y(tǒng)設(shè)計(jì)用于研究,所以非常靈活,用戶可以根據(jù)需要自由設(shè)置。
磁共振引導(dǎo)聚焦超聲助科學(xué)家突破血腦屏障
—RK-100磁共振引導(dǎo)的血腦屏障聚焦超聲系統(tǒng)
背景:
血腦屏障是大腦的內(nèi)皮細(xì)胞,這些細(xì)胞形成的多層膜緊緊包裹住大腦中的所有血管,阻擋**、病毒和其他有害物質(zhì)進(jìn)入大腦。但是,血腦屏障對(duì)大多數(shù)**具有屏蔽作用。當(dāng)醫(yī)生在**腦部腫瘤或神經(jīng)系統(tǒng)**時(shí),只有約25%的**能夠進(jìn)入大腦,這使得**變得異常困難。森尼布魯克保健中心利用磁共振引導(dǎo)聚焦超聲技術(shù),在不進(jìn)行開顱手術(shù)的情況下突破了人體的血腦屏障,從而使得有效**能夠順利進(jìn)入腦部,達(dá)到**的效果。更加令人鼓舞的是,該技術(shù)并不會(huì)長(zhǎng)期破壞人體的血腦屏障。大約12小時(shí)后,血腦屏障即恢復(fù)完好,重新開始為大腦阻擋有害物質(zhì)。
磁共振引導(dǎo)聚焦超聲設(shè)備突破了大腦的血腦屏障,從而能夠在不進(jìn)行手術(shù)的情況下,提高多種腦部**的**水平,例如腦腫瘤、帕金森氏癥,和阿爾茨海默氏癥等。此舉對(duì)神經(jīng)科學(xué)領(lǐng)域意義重大。
原理與應(yīng)用步驟:
研究人員首先為患腦癌患者注射一種化療**的微泡,微泡隨后擴(kuò)散至向腦部血管中。接下來(lái),患者配戴立體定位神經(jīng)系統(tǒng)的超聲波發(fā)射器,研究人員借助磁共振引導(dǎo)聚焦超聲設(shè)備精準(zhǔn)發(fā)射高強(qiáng)度聚焦超聲束,從而引起微泡振動(dòng),迫使構(gòu)成血腦屏障的內(nèi)皮細(xì)胞分開。血液中的化療**便可從間隙中穿過,到達(dá)腫瘤細(xì)胞附近
運(yùn)用磁共振引導(dǎo)聚焦超聲設(shè)備暫時(shí)性開放血腦屏障的效果非常好, 不會(huì)長(zhǎng)期破壞人體的血腦屏障,大約12小時(shí)后,血腦屏障即恢復(fù)完好,重新開始為大腦阻擋有害物質(zhì)。這一劃時(shí)代的突破將會(huì)為絕望的病人帶來(lái)新的希望.
應(yīng)用文獻(xiàn):
Studies using FUS Instruments’ Systems |
|
Moyer, Linsey C., et al. “High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles.” Journal of Therapeutic Ultrasound 3.1 (2015): 7. |
|
Ellens, N. P. K., et al. “The targeting accuracy of a preclinical MRI-guided focused ultrasound system.” Medical physics 42.1 (2015): 430-439. |
|
Burgess, Alison, et al. “Alzheimer disease in a mouse model: MR imaging–guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior.”Radiology 273.3 (2014): 736-745. |
|
Diaz, Roberto Jose, et al. “Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors.” Nanomedicine: Nanotechnology, Biology and Medicine 10.5 (2014): 1075-1087. |
|
Nance, Elizabeth, et al. “Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood? brain barrier using MRI-guided focused ultrasound.” Journal of Controlled Release 189 (2014): 123-132. |
|
Oakden, Wendy, et al. “A non-surgical model of cervical spinal cord injury induced with focused ultrasound and microbubbles.” Journal of neuroscience methods 235 (2014): 92-100. |
|
. |
Phillips, Linsey C., et al. “Dual perfluorocarbon nanodroplets enhance high intensity focused ultrasound heating and extend therapeutic window in vivo.” The Journal of the Acoustical Society of America 134.5 (2013): 4049-4049. |
. |
Alkins, Ryan D., et al. “Enhancing drug delivery for boron neutron capture therapy of brain tumors with focused ultrasound.” Neuro-oncology (2013): not052. |
Alkins, Ryan, et al. “Focused ultrasound delivers targeted immune cells to metastatic brain tumors.” Cancer research 73.6 (2013): 1892-1899. |
|
Huang, Yuexi, Natalia I. Vykhodtseva, and Kullervo Hynynen. “Creating brain lesions with low-intensity focused ultrasound with microbubbles: a rat study at half a megahertz.” Ultrasound in medicine & biology 39.8 (2013): 1420-1428. |
|
Jord?o, Jessica F., et al. “Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound.” Experimental neurology 248 (2013): 16-29. |
|
Scarcelli, Tiffany, et al. “Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in ***** mice.” Brain stimulation 7.2 (2013): 304-307. |
|
Etame, Arnold B., et al. “Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound.” Nanomedicine: Nanotechnology, Biology and Medicine 8.7 (2012): 1133-1142.
|
|
Thévenot, Emmanuel, et al. “Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound.” Human gene therapy 23.11 (2012): 1144-1155.
|
|
Staruch, Robert, Rajiv Chopra, and Kullervo Hynynen. “Hyperthermia in Bone Generated with MR Imaging–controlled Focused Ultrasound: Control Strategies and Drug Delivery.” Radiology 263.1 (2012): 117-127.
|
|
Burgess, Alison, et al. “Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier.” PLoS One 6.11 (2011): e27877.
|
|
Jord?o, Jessica F., et al. “Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer’s disease.” PloS one 5.5 (2010): e10549.
|
|
Blood-Brain Barrier Disruption Studies |
|
Leinenga, Gerhard, and Jürgen G?tz. “Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model.” Science translational medicine 7.278 (2015): 278ra33-278ra33.
|
|
Wang, S., et al. “Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus.” Gene Therapy 22.1 (2015): 104-110.
|
|
McDannold, Nathan, et al. “Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.” Cancer research 72.14 (2012): 3652-3663.
|
|
Treat, Lisa H., et al. “Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma.” Ultrasound in medicine & biology 38.10 (2012): 1716-1725. |
|
Kinoshita, Manabu, et al. “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption.” Proceedings of the National Academy of Sciences 103.31 (2006): 11719-11723.
|
|
Kinoshita, Manabu, et al. “Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound.” Biochemical and biophysical research communications 340.4 (2006): 1085-1090. |
|
Relevant Review Papers |
|
Burgess, Alison, and Kullervo Hynynen. “Drug delivery across the blood-brain barrier using focused ultrasound.”Expert opinion on drug delivery 11.5 (2014): 711-721.
|
|
O’Reilly, Meaghan A., and Kullervo Hynynen. “Ultrasound enhanced drug delivery to the brain and central nervous system.” International Journal of Hyperthermia 28.4 (2012): 386-396. |
2.如有必要,請(qǐng)您留下您的詳細(xì)聯(lián)系方式!